
 

Final Project Report 
 

Team 1 - SDDEC19-01 

 

 
Team Members: Alec Lones, Jeremiah Brusegaard, Mark Schwartz, Nolan Kim 

 

Faculty Advisor and Client: Benjamin Blakely 

 

Team Website: ​http://sddec19-01.sd.ece.iastate.edu/ 

 

 
 

 

 

 

 

 

 

 

 

 

http://sddec19-01.sd.ece.iastate.edu/


 

1. Revised Project Design 4 
1.1 Problem Statement 4 
1.2 Proposed Solution 4 
1.3 Operating Environment 4 
1.4 Minimum Virtual Machine Specifications 5 
1.5 Intended Uses and Users 5 
1.6 Assumptions and Limitations 6 

1.6.1 Assumptions 6 
1.6.2 Limitations 6 

1.7 Relevant Standards 6 
1.8 High Level Block Diagram 6 

2. Implementation Details 8 
2.1 Functional Requirements 8 
2.2 Non-Functional Requirements 8 
2.3 Modules 9 

2.3.1 Web Scraper 9 
2.3.2 Lemmatizer 9 
2.3.3 Vectorizer 9 
2.3.4 Machine Learning 10 
2.3.5 Database 10 

4. Testing Process and Results 11 
4.1 Testing the Machine Learning Model 11 
4.2 Testing the Model on Training Data 11 
4.3 Results 11 
4.4 Testing Promising Models on the Internet 12 
4.5 Results 12 
4.6 Scraper Testing 12 
4.7 Results for Scraper Testing 12 
4.8 Database Testing 12 
4.9 Results for Database Testing 13 

5. Concluding Material 13 
5.1 Conclusion 13 
5.2: Recommendations for Future Work 13 
5.3: References 14 

 

 

2 



Appendix I - Operation Manual 15 
Virtual Machine Setup 15 
Web Crawler Setup 15 
Database Setup 15 
Front End Setup 16 

Appendix II - Initial Design Versions 16 

Appendix III - What We Learned 17 

Glossary 17 
 

  

3 



 

1. Revised Project Design 

1.1 Problem Statement 

Currently, there is no good way to be notified about every data breach that occurs. Since 

companies can release breach reports on any medium, including Twitter posts, blog posts, or 

forum threads, important data breaches can easily fly under the radar. This can be incredibly 

dangerous for companies because they need to stay up to date with the latest data breaches. 

Not staying up to date can lead to potential vulnerabilities in their own environments not being 

addressed.  In addition, it is important for these data breaches to be stored for security teams to 

reference later. 

1.2 Proposed Solution 

The purpose of this project is to serve as an early warning for CSO’s (Chief Security Officer) on 

breach reports that may affect their company . We plan to do this by implementing a web 

scraper to traverse the internet and identify data breach reports using machine learning. Our 

scraper will then store the breach reports in a database for future reference. With this 

information, the CSO will remain informed on current security threats to their organization. 

1.3 Operating Environment 

Our machine learning model is stored in a file formatted for Linux machines, and therefore the 

scraper must be run on a Linux machine with Python 3 installed. The machine must also be able 

to run a MongoDB database, which the scraper will use to store breach reports. This 

environment will require that we have constant uptime or at least near constant uptime to allow 

for uninterrupted web crawling. 

In order to make the installation process easier, we have created a virtual machine with all the 

necessary libraries and programs installed. Therefore, a computer with a VirtualBox installation 

running virtual machine which meets our minimum specifications, listed below, is required for 

the best results. 

4 



1.4 Minimum Virtual Machine Specifications 

OS: Linux 64-bit 

Processor: 4 Core CPU 

Memory: 16 GB RAM  

Network: Constant Internet connection 

Storage: 20 GB available space 

1.5 Intended Uses and Users 

The user for this tool is a CSO or a cybersecurity analyst, who is assumed to have advanced 

technical capability and the desire to keep up with new breach reports. With our tool, users will 

be able to see new breach reports and learn about potential security breaches that could have 

an effect on their company, and react accordingly. The purpose of this tool is to gather, 

consolidate, and report information, not act on it. Once the user receives information about a 

breach, they will need to decide on the next course of action themselves. 

  

5 



1.6 Assumptions and Limitations 

1.6.1 Assumptions 

● Uninterrupted internet connection 

● Constant power supply 

● Will not get blacklisted from too many DNS requests (Request limit is implemented to 

avoid this) 

● Analyst training the machine learning model will be fully competent in what a breach 

report is or is not 

● There won’t be resource limitations for crawling - hardware, etc. 

1.6.2 Limitations 

● Breach reports are limited to English 

● The project should take no more than 1 year 

● Reduced crawling speed to avoid getting blacklisted 

● Budget was $0 for project development restricting hardware and software resources for 

development 

1.7 Relevant Standards 

● PEP8 Style Guide Standard 

○ Promotes readability and consistency in code. 

● IEEE 829 

○ Format for test documents. 

● IEEE 1008 

○ For creating comprehensive test cases. 

 

 

6 



1.8 High Level Block Diagram 

 

 

 

 

 

 

  

7 



2. Implementation Details 

2.1 Functional Requirements 

● System must scrape the internet 

○ Data will only be pulled from the internet 

○ Scraper should not be limited to a set list of sites 

● System must save pages that contain data breach reports 

○ Pages flagged as data breach reports will be saved into the database 

○ Pages verified by an analyst will be marked as so in the database 

● System must allow for training of the Machine Learning model 

○ System comes with a model but allows training of a new one 

● System must support displaying of aggregate data 

○ Web interface will display data and allow the analyst to verify results 

● Machine learning can evaluate a webpage and get feedback from supervisor 

● Breach reports are stored in a database as a link to the website they came from 

● Front end UI should display new breach report 

2.2 Non-Functional Requirements 

● Can be run on a Linux machine with Python3 and a network connection 

● Can run without interruptions to crawl multiple websites without crashing 

● Must crawl at minimum 30 pages per min 

  

8 



2.3 Modules 

2.3.1 Web Scraper 

For the web scraper, Scrapy was used. Scrapy is a library for Python which has a lot of web 

scraping features that were useful for this project. Scrapy is used to scrape the entire internet 

starting with a given url.  

There is an issue with how Scrapy handles following links involving recursion causing it to crash 

due to memory consumption after extended periods of use. To mitigate this when running the 

scraper the user must put in a starting url for the crawler so that it is easy to restart and choose 

a new starting point for the crawler. 

The web scraper works by getting a start url and pulling the html from that page. Then the body 

text from the html is sent to the lemmatizer for processing. 

2.3.2 Lemmatizer 

For our lemmatizer we used the library NLTK (Natural Language ToolKit) which has the english 

language corpus to recognize words and lemmatize them appropriately.  

When a block of text is passed to the lemmatization function it first tags every word with its given 

part of speech which allows the lemmatizer to know how the word needs to be processed. After 

that it returns the same block of text with all the processed words. The processed text is sent to 

the vectorizer for further processing. 

2.3.3 Vectorizer 

The vectorizer was created with Sci-Kit Learn. A count vectorizer is used because it is the most 

memory efficient option available while also allowing the user to see the most commonly 

vectorized words.  

There was also testing done to see if using N-grams would enhance the project however it didn’t 

help in performance. The reason to use N-grams would be for making sure context is retained in 

the reports found however it seems the model performed best just look at the word count.  

The count vectorizer will take the lemmatized words as input and create vectors of words that 

the machine learning model understands. 

 

9 



2.3.4 Machine Learning 

For the machine learning portion of the project SciKit Learn is used as well as some other 

libraries. The best model found is the Random Forest Classifier.  

At this time the model is using 100 classification trees with 13,400 features. The best 

parameters were found using randomized grid search and cross validation (see testing section). 

Once the classification has been made the model sends the data to be stored in the database. 

2.3.5 Database 

MongoDB is used due to the flexibility that it allows.  Since no relational data is stored, a 

standard SQL database was not appropriate.  Currently the following fields are being stored:  

● BaseURL  

○ Domain that was scraped 

○ Stored to look at statistics on a per domain basis 

● FullURL  

○ Entire URL string that the scraper was directed to 

○ Used for manual review of reports 

● ScrapyRedirectURL 

○ URL that Scrapy got redirected to when scraping the page 

○ Used for manual review of reports 

● FullText 

○ Unprocessed text that got scraped 

○ Used for troubleshooting lemmatizer 

○ Could be removed in order to reduce storage space 

● LemmatizedText 

○ Processed text that was lemmatized 

○ Used for troubleshooting lemmatizer 

○ Could be removed in order to reduce storage space 

● Breach  

○ Boolean for whether or not a link is a breach report  

● Confirmed 

○ Boolean for if a human has confirmed that the Breach value is correct 

10 



4. Testing Process and Results 

4.1 Testing the Machine Learning Model 

To test the machine learning model there was different techniques used such as cross 

validation and maximizing the Matthews Correlation Coefficient. By using cross validation it 

ensures that the model is not overfitting. Then using Matthews Correlation Coefficient we can 

get a more balanced accuracy scoring metric since our data is more weighted to non breach 

reports. 

4.2 Testing the Model on Training Data 

A large portion of testing done involved finding a satisfactory machine learning model. Because 

we used Random Grid Search, this process involved generating a model with random 

parameters and running it over a set of test data. 

 

To quickly separate bad models from good models, we looked at the model’s Matthew’s 

correlation coefficient and its confusion matrix, and use those figures to get an idea about how 

many false positives and false negatives were being generated. We favored models that 

minimize the amount of false negatives, as it can be dangerous to miss a breach report. 

Minimizing false positives is a bonus, but not as important. Note all this testing was on data 

supplied by the client for testing. However, it appears this was a very good sample of data for 

training our model based on the results we found. 

4.3 Results 

The best model we found achieved a Matthews correlation coefficient of .95 on test data. This is 

very good because it means our model is performing well in classification even with the data 

being weighted with more non breach reports than breach reports. 

11 



4.4 Testing Promising Models on the Internet 

Once we found a model that achieves good results for our set of test data, we connected it to 

the scraper and let it run on pages scraped from the internet. We then sort through the classified 

web pages by hand to determine whether the machine learning model works properly when fed 

random web pages. 

4.5 Results 

By using this method, we found a model that both performed well on test data and in the wild.  

4.6 Scraper Testing 

Testing the scraper involved making sure the scraper could pull necessary information from 

websites, as well as scrape without stopping. In order to test these things, we let the scraper run 

on its own until it crashed or failed to pull data from a page. 

4.7 Results for Scraper Testing 

We found that the scraper had trouble scraping data from dynamic web pages. In addition, we 

found that Scrapy’s memory usage increased as it kept running, causing it to eventually crash 

after very long periods of continuous scraping. Because both of these issues involved problems 

that were caused by design faults in the libraries we were using, we decided that they were out 

of scope for this project. 

4.8 Database Testing 

The Database Interface was tested using some of the seed data supplied by the client.  Each 

method was run to check for code coverage and that the database was storing information 

properly and accurately.  Additionally relevant errors were handled by the interface.  Lastly, the 

Add command was rigorously tested to see if the threading could handle hundreds of Add 

commands simultaneously.  

12 



4.9 Results for Database Testing 

All tests passed successfully. The database will be fit to run this program with a high volume of 

requests coming in. It also successfully pulls and stores data quickly. 
 

5. Concluding Material 

5.1 Conclusion 

In conclusion, it was found that it is possible to use machine learning to accurately and quickly 

find new breach reports. This method eliminates the need for human actors to spend time 

finding breach reports and enables them to use that time to act on existing breach reports. The 

libraries we used to build the scraper and machine learning agent are not suited to be used 

when implementing a permanent version of this tool. However, they were sufficient to prove the 

effectiveness of this method. 

5.2: Recommendations for Future Work 
For a future team picking up this project, we have two major recommendations. Firstly, the 

scraping engine should be changed out in favor of an engine that can run forever without 

continuously consuming more memory. This is necessary in order to have the program scrape 

the internet without having to stop and dump memory. Secondly, the machine learning model 

should be changed in favor of a model that supports supervised learning. It is recommended 

that you test these features early in order to make sure they function properly. 

 

Aside from core changes, a useful feature that could be implemented is link prioritization. As it 

is, the scraper wastes a lot of time searching through links that have little to do with breach 

reports. A feature that recognizes links that are more likely to lead to breach reports and 

prioritizes them would save a lot of time. However, it is important that link prioritization doesn’t 

prevent the crawler from finding breach reports in places they would be less likely to be found. 

13 



5.3: References 
1. “PEP 8 -- Style Guide for Python Code.” ​Python.org​, 

www.python.org/dev/peps/pep-0008/#introduction​. 
2. “829-1998 - IEEE Standard for Software Test Documentation.” ​IEEE​, 

www.standards.ieee.org/standard/829-1998.html 
“1008-1987 - IEEE Standard for Software Unit Testing.” ​IEEE​, 

www.standards.ieee.org/standard/1008-1987.html  

14 

http://www.python.org/dev/peps/pep-0008/#introduction
http://www.standards.ieee.org/standard/829-1998.html
http://www.standards.ieee.org/standard/1008-1987.html


Appendix I - Operation Manual 

Virtual Machine Setup 

1. Import the OVA file by opening Oracle’s VirtualBox then clicking file > import appliance.  

2. Browse to the OVA file and hit import. Keep hitting next until the machine is imported to 

ensure that all the settings remain the same so the UI will be available on the host 

machine. 

3. To start the virtual machine, hit start after selecting the newly imported VM. 

Web Crawler Setup 

1. Once in the virtual machine login to user ​team1​. The password is ​sddec19-01​, please 

change this if a more secure password is needed. (Note team1 user has root ability). 

2. Once in team1 running the command ​breachCrawler ​followed by a starting url will start 

the crawler on that url. Note that due to a memory issue with scrapy the crawler will stop 

when it runs out of memory so there will be a need to restart the crawler as needed. 

Example usage: ​breachCrawler 

https://krebsonsecurity.com/2019/10/avast-nordvpn-breaches-tied-to-phantom-user-acco

unts/  

 

After running breach crawler scrapy will start outputting to the console with information about 

websites it is crawling. When the crawler finds a breach report it will store it in the database.  In 

order to see these breach reports in a user friendly manner, connect to the frontend. 

Database Setup 

The Database comes as part of the Virtual Machine.  It is set to run on start under the mongod 

service daemon.  If the database structure needs to be changed, simply just update the 

database interface.  A feature of Mongo is that it will update the page layout on the fly when new 

pages are added.  Additionally Mongo will add a new collection and database by simply 

changing the names and adding a new page. 

15 

https://krebsonsecurity.com/2019/10/avast-nordvpn-breaches-tied-to-phantom-user-accounts/
https://krebsonsecurity.com/2019/10/avast-nordvpn-breaches-tied-to-phantom-user-accounts/


Front End Setup 

In order to connect to the front end, the following steps must be taken: 

1. Find the IP address of the Virtual Machine 

a. Running ​ifconfig ​on the VM will list its IP address 

b. The VM is currently set to run in bridged mode, so it will have its own IP separate 

from the host machine 

2. Start the Frontend Web Server 

a. On the VM terminal ​cd​ into the main project directory and navigate to the 

frontend folder 

b. Once inside the frontend folder, issue an ​ls ​command, you should see 

manage.py 

c. If you see ​manage.py​, then you are in the right place 

d. Issue the command ​python manage.py runserver 

e. This will start the web server on port 8000 by default 

3. Connect to the front end 

a. On a different machine open up a web browser 

b. Type in ​http://IP:8000/​ where ​IP​ is the VM’s IP address 

c. This will connect you to the main page of the frontend 

Appendix II - Initial Design Versions 
Our initial design version involved a human-in-the-loop machine learning model training 

methodology. A human would have been able to feed in known breach and non-breach reports 

to the machine learning model after it was initially created, improving its learning capabilities. 

However, due to limitations in our machine learning library, Scikit Learn, we were unable to 

create this style of machine learning model. To mitigate this problem, we tried to create the best 

model we could on initial training. 

 

Also, our initial design suggested the use of a hash vectorizer. However, after initial testing of 

the prototype with this type of vectorizer, we found it to be using an unsustainable amount of 

memory. To mitigate this problem we switched to a count vectorizer. 

16 

http://ip:8000/


Appendix III - What We Learned 
After completing this project, we learned the basics of machine learning, web crawling in 

Python, Mongo, and how to connect a front-end, back-end, and database. We also learned that 

finding a good machine learning model can take a very long time and a lot of processing power. 

Funny enough we found our model when accidently inputting the wrong parameters for loading 

the file. It ended up working great for us and is now the model being used for the project. Note 

that this project can be improved on since it was mainly created as a proof of concept for our 

client. There is most likely a better model out there that can be used which will allow for on the 

fly training.  

Glossary 
CSO 

Chief Security Officer 
DNS 

Domain Name System 
Lemmatize 

Process of shortening and processing words for a machine learning algorithm to easily 
categorize  

ML 
Machine Learning 

Model 
Statistical function creating a prediction output 

NLTK 
Natural Language ToolKit library for Python 

OVA 
Open Virtualization File Extension  

Web Scraper 
A program that automatically harvests data from websites 

Scrapy 
A Python library used for scraping the internet 

UI 
User Interface 

Vectorize 
Process of turning a string into a vector of floats so that a statistical model can 
understand them 

17 



Virtual Machine 
Software that emulates a computer and runs on a host machine 

VM 
Virtual Machine 

 
 

18 


