
Crawling For Breach Reports

● PEP 8 Code formatting

● IEEE 1008-1987 - Unit Testing standards

● IEEE 829 - Documentation Standards

Most Relevant Standards

Team 1
Functional Requirements

● System must scrape the internet
○ Data will only be pulled from the internet

● System must save pages that contain data breach reports
○ Pages flagged as data breach reports will be saved into the database
○ Pages verified by an analyst will be marked as so in the database

● System must allow for training of the Machine Learning model
○ System comes with a model but allows training of a new one

● System must support displaying of aggregate data
○ Web interface will display data and allow analyst to verify results

Technical Details
● Programming Language: Python 3
● Libraries

○ Web Scraper Scrapy
○ Lemmatizer - NLTK (Natural Language ToolKit)
○ Machine Learning Module - SciKit Learn, Pandas, Numpy
○ Database - MongoDB
○ Web Interface - Django

Word Importance Value
breach 0.073

security 0.063

attack 0.055

hack 0.039

malware 0.026

cybersecurity 0.025

hacker 0.021

victim 0.019

compromise 0.017

Development
● Tools and Environment

○ Pycharm
○ Ubuntu 19.10 Server (Hosting

Application)
○ VirtualBox

Most Influential Words

Design Approach
Our design is fairly straightforward. Our web scraper scrapes the web to pull
down webpage text, which gets lemmatized to make it easier for the machine
learning module to categorize. Our machine learning module decides
whether or not the page is a breach report. At this point in the process, a
human worker can correct the algorithm to train the model. Data breach
reports are then stored in a database, and can be accessed via a web
interface.

ML Model
● Random Forest Classifier
● Training Data Results:

○ False Positive Rate: 0.005%
○ False Negative Rate: 0.054%
○ Matthews Correlation

Coefficient: 0.95

Unit Testing
● Software is broken into 5 main

modules: the scraper,
lemmatizer, vectorizer,
machine learning, and
database

● Used PyUnit to unit test each
individual module as much as
possible with the machine
learning module being the
exception

ML Model Testing
● Used Cross validation with random

subset sampling
● Used Matthews correlation

coefficient for validating our true
positive, true negative ratios
supplemented with the confusion
matrix

Note: Training data set was supplied
by the client

Faculty Advisor/Client: Benjamin Blakely

Non-Functional Requirements
● Python will be the primary programming language
● Breach reports are limited to the English language
● Crawler will crawl the internet at a speed slow enough speed to not get

blacklisted by sites

Operating Environment
● Linux Operating System

○ Other OSes are also supported, but default model will not integrate
● Recommended 16 GB RAM or more
● Recommended 4 CPU cores or more

Team Members: Alec Lones, Jeremiah Brusegaard, Mark Schwartz, Nolan Kim

Team Website: http://sddec19-01.sd.ece.iastate.edu/

Problem Statement
Currently, there is no good way to be notified about every data breach that
occurs, so important data breaches can easily fly under the radar. This can
be dangerous for a company’s security team, who needs to stay up to date
with the latest data breaches in order to keep their company secure. In
addition, it is important for these data breaches to be stored for security
teams to reference later.

Solution
This project will serve as an early warning for Chief Security Officers on data
breach reports that may affect their company. We accomplished this by
implementing a web scraper to traverse the internet and identify data breach
reports using machine learning. Our scraper then stores the breach reports
in a database for future reference. Finally, an analyst will be able to validate
and select relevant breaches through a web interface. With this information
the Chief Security Officer will be informed on current security threats to their
organization.

Web Scraper
(Scrapy)

Machine Learning
(SciKit Learn, Pandas, Numpy)

ML Trainer
(SciKit Learn, Pandas, Numpy)

Web Interface
(Django)

Raw Text

Database

(MongoDB)

Lemmatisation
(NLTK)

Processed
Text

Potential
Breaches

View
Model

Train
Model

View and
Update

Breaches

Block Diagram

